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Abstract
While diffusion-based T2I models have achieved remarkable image generation quality, they also enable easy
creation of harmful content, raising social concerns and highlighting the need for safer generation. Existing
inference-time guiding methods lack both adaptivity—adjusting guidance strength based on the prompt—and
selectivity—targeting only unsafe regions of the image. Our method, SP-Guard, addresses these limitations by
estimating prompt harmfulness and applying a selective guidance mask to guide only unsafe areas. Experiments
show that SP-Guard generates safer images than existing methods while minimizing unintended content alteration.
Beyond improving safety, our findings highlight the importance of transparency and controllability in image
generation.
WARNING: This paper contains AI-generated images that may be offensive. Sensitive contents are masked.
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1. Introduction

The rapid advancements in text-to-image (T2I) diffusion models [1, 2] have enabled the generation of
high-quality images based on textual inputs. However, the extensive training data often contain unsafe
content and inherent biases [1, 3], posing significant risks of generating unexpected unsafe images [4].
There are also concerns about malicious users exploiting model vulnerabilities to create harmful images
by generating attacking prompts [5, 6, 7].

To mitigate these risks, existing defenses fall into two main categories. Detection-based methods
[8, 1, 7] attempt to identify harmful images, but often suffer from false positives that block benign
content [9]. Removal-based methods intervene before or during generation by adjusting the diffusion
process at inference time [10], editing model weights [11, 12], or optimizing prompts [13]. Most existing
methods struggle to handle multiple harmful concepts simultaneously. Weight-editing and prompt-
based approaches require retraining for new unsafe concepts. In contrast, inference-time methods
enable safe generation through lightweight manipulations. One notable approach in this category is
Safe Latent Diffusion (SLD) [10], which utilizes classifier-free guidance to adjust noise estimates away
from unsafe concept directions, even when multiple concepts are present. Despite its effectiveness, we
observe that SLD sometimes fails to remove harmfulness from images, even under maximum guidance
(SLD-max). Moreover, its guidance is applied inconsistently across prompts, i.e., some prompts become
sufficiently safe while others remain unsafe with the same configuration – see Fig. 1.

In light of these limitations, we propose SP-Guard, an inference-time method emphasizing the
importance of selective and prompt-adaptive safe guidance to prevent unsafe image generation. We
suspect that the reason SLD fails is that it does not reflect how unsafe the generated image will be.
Therefore, before presenting our method in detail, we underscore the importance of adapting safety
guidance (i.e., unsafe concept removal) to each individual prompt. We demonstrate this in Section 2.2
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Figure 1: Selectivity and adaptivity of SP-Guard. SLD
lacks an adaptive mechanism and requires different hyper-
parameter sets depending on the prompt; SLD-medium is
sufficient for the right prompt, while SLD-max is neces-
sary for the left prompt. Furthermore, SLD-max applies
the safety guidance throughout the entire image, as shown
in the guiding mask where yellow (≈ 1) and blue (≈ 0) in-
dicate the extent of guidance, often altering the low-level
semantics of the original image. In contrast, SP-Guard se-
lectively targets the unsafe part of the images, providing
an appropriate level of safety guidance adaptively for each
prompt to ensure safe image generation, without changing
the semantics too radically.

through a comparative analysis of images generated in a straightforward experiment. SP-Guard, detailed
in Section 2.3, is based on the intuition that the similarity between the noise predictions conditioned on
the prompt and those conditioned on unsafe concepts can serve as a proxy for estimating the unsafe
degree of the generated image. Specifically, SP-Guard proactively estimates the unsafe degree of a
prompt and provides safe guidance during inference. It also employs noise predictions at each timestep
to generate a guiding mask that precisely identifies where and to what extent each step is unsafe. Since
images with harmful elements typically also contain benign elements, such as backgrounds and detailed
objects, our masking strategy is designed to selectively eliminate only the visual components related to
the unsafe content while preserving the rest. The effectiveness of SP-Guard is shown in Fig. 1. While
SLD yields inconsistent results under the same guidance level (i.e., SLD-medium in the second row), due
to the varying degrees of prompt harmfulness, SP-Guard consistently produces safe images regardless of
the initial prompt harmfulness. Moreover, SP-Guard employs a precise masking strategy that selectively
captures regions associated with unsafe concepts, whereas SLD often applies guidance more broadly,
affecting unrelated areas and resulting in images that diverge from the original intent (third row).

In Section 3, we conduct both quantitative and qualitative evaluations of SP-Guard on four bench-
mark datasets. Our findings indicate that SP-Guard achieves a lower detection rate of unsafe content,
effectively preserving the integrity of the original image content. Qualitative analyses further verify
that SP-Guard consistently converts unsafe elements into safe content, regardless of the potential harm
of the prompt. Furthermore, SP-Guard maintains image fidelity and text alignment comparable to
SD, supporting its practicality. The underlying idea of prompt-adaptive and selective guidance opens
up new opportunities for broader applications in safe and controllable image generation. Moreover,
by concretely analyzing the limitations of previous approaches and highlighting the importance of
estimating the prompt-specific potential harmfulness, SP-Guard contributes to the transparency and
controllability of safe image generation. We further elaborate on these aspects in Section 4.

2. Method

2.1. Preliminaries

Diffusion-based T2I and Classifier-Free Guidance. Diffusion models [14] are generative models that
create samples from Gaussian noise, progressively denoising based on a learned data distribution. The
model iteratively predicts an estimate of the noise to be removed. For text-based image generation [1, 2],
the estimated noises are conditioned on the text prompt. Classifier-free guidance approach [15] allows
conditioning without an additional pre-trained classifier, training the model with or without text
prompts randomly to handle both conditional and unconditional images. During inference, the model
uses noise estimates 𝜖̃𝜃 at each steps formulated as follows:

𝜖̃𝜃(z𝑡, c𝑝) := 𝜖𝜃(z𝑡) + 𝑠𝑔(𝜖𝜃(z𝑡, c𝑝)− 𝜖𝜃(z𝑡)), (1)
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(b) Visualization of𝜇𝑡 of SLD for applying safe guidance.
Figure 2: Limitations of SLD in safety guidance. See Section 2.2 for details.

where z𝑡 is the latent variable at timestep 𝑡, and c𝑝 is the text embedding for the prompt 𝑝. 𝑠𝑔 is the
guidance scale that controls the strength of conditioning.
Semantic and Safe Guidance at Inference. Controlling T2I models to faithfully reflect user intentions
in generated images remains a challenging task. One line of research addresses this challenge by
classifier-free-guidance to enable semantic control at inference time [16, 10]. This approach introduces
a semantic guidance term, 𝛾(z𝑡, c𝑝, c𝑒) into Eq. (1), where 𝑒 is a concept capturing the user’s intent.
This results in

𝜖̃𝜃(z𝑡, c𝑝, c𝑒) = 𝜖𝜃(z𝑡) + 𝑠𝑔
(︀
𝜖𝜃(z𝑡, c𝑝)− 𝜖𝜃(z𝑡) + 𝛾(z𝑡, c𝑝, c𝑒)

)︀
. (2)

To reflect the concept 𝑒 in the image, 𝛾 applies positive guidance in the direction of 𝜖𝜃(z𝑡, c𝑝). Con-
versely, to prevent the appearance of 𝑒, negative guidance is applied. In the realm of safe T2I, where the
objective is to exclude unsafe concepts 𝑆 from the generated image, 𝛾 is specifically defined as,

𝛾(z𝑡, c𝑝, c𝑆) = −𝜇𝑡(c𝑝, c𝑆) · (𝜖𝜃(z𝑡, c𝑆)− 𝜖𝜃(z𝑡)), (3)

where 𝜇𝑡 adjusts the guidance strength to avoid generating unsafe content. Schramowski et al. [10]
propose SLD which defines 𝜇𝑡 as follows:

𝜇𝑡(c𝑝, c𝑆) =

{︃
min(1, |𝜓|), if 𝜖𝜃(z𝑡, c𝑝)⊖ 𝜖𝜃(z𝑡, c𝑆) < 𝜆

0, otherwise
, 𝜓 = 𝑠𝑆(𝜖𝜃(z𝑡, c𝑝)− 𝜖𝜃(z𝑡, c𝑆)). (4)

𝜓 represents the scaled difference between the noise estimates conditioned on the prompt and those
conditioned on the unsafe concept. It is used to modulate 𝜇𝑡 based on a predefined threshold 𝜆.
Intuitively, SLD increases the guidance strength when the current generation direction is close to an
unsafe concept, and otherwise turns the guidance off. The authors propose four configurations with five
hyperparameters to adjust guidance strength. More details of Eq. (4) will be discussed in Section 2.2.

2.2. Safety Considerations in T2I models

This section delineates critical safety considerations for ensuring safe image generation in T2I models,
particularly highlighting the limitations inherent in the SLD framework evidenced by Eq. (4). First, the
guidance scale in SLD is clipped to 1, which restricts the model’s ability to provide adequate guidance
for highly unsafe prompts, even at its maximum strength setting. As shown in Fig. 2a (d) and (e), even
with maximal guidance (i.e.,SLD-max), the generated images retain unsafe content. Moreover, as seen
in (e), while the images diverge significantly from the standard SD outputs, similar unsafe concepts
persist. This issue stems from the masking condition specified in Eq. (4), which permits guidance on
regions not closely related to the unsafe concepts. This effect is visible in the mask visualizations shown
in Fig. 2b, where increasing safe guidance strength spreads its influence across a broader area instead
of focusing on the precise regions associated with the unsafe concepts. Under SLD-max settings, this



dispersion can result in the generation of different yet equally unsafe images. In addition, 𝜓 increases
with the difference in noise estimates between the input prompt and the unsafe concept, resulting in
stronger guidance where they diverge. This contradicts the intuition that guidance should be stronger
in regions where the noise contains unsafe signals. Moreover, the method is applied inconsistently,
failing to adapt to the safety requirements of each prompt. As shown in Fig. 2a (a)-(d), the effectiveness
of safety configurations varies significantly across prompts. Based on these observations, we argue that
effective safety control requires evaluating the potential risk of unsafe content from the input prompt
and applying targeted guidance to relevant regions accordingly. To our knowledge, our work provides
the first in-depth analysis of the SLD framework, identifying why its performance, reported in previous
studies [11, 17, 12], frequently fails to address safety concerns adequately. Notably, no previous work
has investigated this limitation. In the following section, we introduce SP-Guard which guarantees safe
image generation by applying precise, prompt-specific guidance at inference time.

2.3. SP-Guard: Selective Prompt-adaptive Guidance

To ensure safe image generation, it is crucial to estimate whether a prompt is likely to produce unsafe
content and to what extent before the final image is generated. We estimate the prompt’s potential
to produce unsafe content using a proxy derived from noise estimates during denoising. Since noise
estimates conditioned on texts contain semantic information [15], they are pivotal for safety assessments.
Prior works have successfully leveraged noise estimates for semantic control [18, 16, 10, 19]. Building
on this, we define the noise direction Δc𝑝,𝑡 for a given text prompt 𝑝 and timestep 𝑡 as follows:

Δc𝑝,𝑡 = 𝜖𝜃(z𝑡, c𝑝)− 𝜖𝜃(z𝑡, 𝜑) (5)

where 𝜑 is a null-text embedding. Intuitively, Eq. (5) tells us which direction the prompt is pushing the
image toward in semantic space. Then, we compute the cosine similarity between the noise direction
of a given text prompt 𝑝 and that of an unsafe concept 𝑠, i.e., Sim (Δc𝑝,𝑡,Δc𝑠,𝑡) for each timestep 𝑡,
where Sim (·, ·) denotes the cosine similarity between two vectors. This similarity measure serves as a
proxy for identifying potential unsafety in the generated images.

We propose SP-Guard, which uses the similarity between noise estimates in the early diffusion steps
as a proxy for the prompt’s unsafety level. Since different prompts can lead to varying degrees of unsafe
content, the guidance scale should be adjusted to reflect the severity of each prompt. Given unsafe-
concept set S = {𝑠1, ...𝑠𝑁}, SP-Guard first estimates the proxy value 𝑃 (c𝑝, cS), which represents the
prompt-specific unsafe degree, during the earlier 𝑡𝑝 timesteps.

𝑃 (c𝑝, cS) = max
𝑗∈{1,...,𝑁}

{︁ 1

𝑡𝑝

𝑇−𝑡𝑝+1∑︁
𝜏=𝑇

Sim(Δc𝑝,𝜏 ,Δc𝑠𝑗 ,𝜏 )
}︁

(6)

where Δc is the noise direction introduced in Eq. (5), and Sim(·, ·) is the cosine similarity. By estimating
how similar the direction of the given prompt 𝑝 is to that of the harmful concept set 𝑆, Eq. (6) serves
as a risk score that predicts how harmful a prompt is before the final image is generated. After the
initial 𝑡𝑝 timesteps, SP-Guard incorporates this risk score through a new guidance weight 𝜇𝑡(c𝑝, c𝑆),
which is used in 𝛾(z𝑡, c𝑝, c𝑆) defined in Eq. (3). This weight controls both the strength and the spatial
positioning of the guidance at each timestep:

𝜇𝑡(c𝑝, c𝑆) = 𝜆(𝑡) · 𝑃+(c𝑝, cS) ·𝑀(z𝑡, c𝑝, c𝑆) (7)

where 𝑃+(c𝑝, cS) = max(0, 𝑃 (c𝑝, cS)) to ensure only non-negative contributions influence the
guidance. 𝜆(𝑡) is a pre-defined function of timestep t, detailed later in this section. 𝑀(z𝑡, c𝑝, c𝑆) acts as
a mask that selectively applies guidance to regions likely to contain unsafe content, thereby promoting
safe image generation. To elaborate on 𝑀(z𝑡, c𝑝, c𝑆), we scale each mask value based on the pixel-wise
proxy value, similar to the Sim(·, ·) function used in Eq. (6). Each pixel value for𝑀(z𝑡, c𝑝, c𝑆) is defined
as follows:
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Figure 3: Guiding process of SP-Guard.
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Figure 4: Qualitative comparison of methods for removing inappropriate content.

𝑀(z𝑡, c𝑝, c𝑆)[𝑖, 𝑗, 𝑘] =

{︃
1 + max(0, |𝜓|) if |Δc𝑆,𝑡[𝑖, 𝑗, 𝑘]| > 𝜂𝑞(|Δc𝑆,𝑡|)
0 else

(8)

with 𝜓 = Sim(Δc𝑝,𝑡[𝑖, 𝑗, :],Δc𝑆,𝑡[𝑖, 𝑗, :]), where 𝜂𝑞(|Δc𝑆,𝑡|) = 𝑞-percentile of |Δc𝑆,𝑡|.

The masking condition is motivated by Brack et al. [16], who showed that the noise space consists of
semantic concepts, with each concept concentrated in the upper and lower tails of the noise distribution.
Accordingly, we mask the top 𝑞-percentile elements and compute cosine similarity for the corresponding
pixels. In Fig. 3, we visualize 𝑀(z𝑡, c𝑝, c𝑆), showcasing how our mask design strategically applies safe
guidance to specific regions, such as nude body parts. In contrast, the masking process of SLD in Fig. 2b
spreads the guidance over unrelated areas of the image, often altering benign content unnecessarily.
This difference stems from the novelty of SP-Guard, which combines the prompt-adaptive risk score in
Eq. (6) with the selective masking in Eq. (8), enabling more precise and targeted guidance.

Lastly, we use a step function as a default form of 𝜆(𝑡) in Eq. (7). Specifically, after 𝑡𝑝 timesteps, 𝜆(𝑡)
is set to 𝜆max and subsequently reduced to 1.0 in the later steps. The reduction is essential to avoid
visual artifacts, as prior work [2] shows that no such artifacts or distortion occur when the guidance
scale is capped at 1.0. Furthermore, Yi et al. [20] and Balaji et al. [21] observe that text prompts primarily
influence the early diffusion steps, while the later stages focus on denoising and completing details
using the latent image itself. These observations support our design: safe guidance should be prominent
in the early steps, but does not require strong influence later on, and should be limited to preserve
image quality. We validate the effectiveness of the step function in Section 3 and also explore the impact
of varying 𝜆max or using alternative scheduling strategies for 𝜆(𝑡).

3. Experiments

3.1. Experimental Setup

We compare SP-Guard with the original Stable Diffusion (SD) [1] and inference-time guiding methods:
SD with a simple negative prompt (NEG), SEGA [16], and four configurations of SLD [10]. Since many
existing methods [7, 22, 23, 24, 25, 26, 27, 28] report their results only on a single unsafe concept or
handle different unsafe categories separately, their practical applicability is somewhat limited in multi-



Table 1
Results of safety, content preservation, and image quality. Each highlighted color corresponds to the best
and second-best unsafe rates, as well as values worse than SP-Guard in terms of LPIPS, FID, or CLIP. SP-Guard
achieves a strong trade-off, improving safety while preserving content and fidelity.

I2P Ring-A-Bell MMA-Diffusion UnlearnDiff COCO-30k DrawBench
Unsafe ↓ LPIPS ↓ Unsafe ↓ LPIPS ↓ Unsafe ↓ LPIPS ↓ Unsafe ↓ LPIPS ↓ FID ↓ CLIP ↑ CLIP ↑

SD 25.16 – 78.51 – 67.25 – 27.20 – 19.36 0.310 0.308

NEG 14.68 0.45 72.70 0.46 57.45 0.44 19.77 0.43 24.69 0.301 0.298
SEGA 13.94 0.32 61.30 0.40 58.10 0.29 18.15 0.33 23.40 0.301 0.299
SLD-weak 19.45 0.17 74.69 0.19 63.98 0.14 23.41 0.18 20.65 0.308 0.305
SLD-medium 15.27 0.34 68.00 0.36 60.47 0.30 18.82 0.34 22.51 0.303 0.301
SLD-strong 11.56 0.45 52.73 0.47 52.18 0.43 15.51 0.44 25.83 0.296 0.292
SLD-max 9.97 0.56 33.83 0.56 41.92 0.54 13.36 0.54 33.85 0.288 0.282

SP-Guard 11.23 0.39 25.45 0.51 48.58 0.38 15.09 0.40 20.78 0.304 0.299

concept scenarios. Therefore, we primarily evaluate SP-Guard against SLD variants, as both address
multiple unsafe concepts concurrently through a unified guidance process, enabling a fair comparison.
We evaluate safe image generation on four datasets: I2P [10], Ring-A-Bell [5], MMA-Diffusion [6],
and UnlearnDiff [29]. To assess image quality, we use DrawBench [2] and COCO-30k [30], which
contain benign prompts. To assess the safety of generated images, we primarily report the unsafe
content detection rate and its relative improvement over SD. We use an average score across four safety
classifiers, MHSC [31], Q16 [32], NudeNet [33], and SD’s built-in Safety-Checker [1], to provide a
balanced estimate of overall harmfulness. To assess content preservation, we use LPIPS [34], which
measures perceptual similarity between images generated by SD and each method, thereby quantifying
how well the non-unsafe regions are retained. We also report CLIP-score [35] to evaluate image-text
alignment and FID [36] to assess image fidelity. We use SD v1.4 with 50 diffusion steps and default
settings across all baselines. For our method, 𝜆max=4.0, 𝑞=0.9, and 𝑡𝑝=10, unless specified otherwise.

3.2. Qualitative analysis

The effectiveness of SP-Guard is demonstrated in Fig. 4. SP-Guard consistently generates safe images
where SD fails. For example, it adds clothing in prompts involving nudity and replaces excessive
blood in violent prompts with benign red elements. Unlike SLD, which applies guidance inconsistently,
SP-Guard achieves reliable and prompt-adaptive safety through proxy-based guidance. Moreover,
SP-Guard effectively confines guidance to areas identified as unsafe.

3.3. Quantitative results & Analysis
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Figure 5: Trade-off between safety improve-
ment and content preservation. Points further
to the upper right indicate safer image generation
with better content preservation.

Evaluation results of safe image generation and content
preservation across all datasets are shown in Table 1.
As shown in the table, SP-Guard achieves safety per-
formance comparable to SLD-max, ranking among the
top inference-time guiding methods. However, it sig-
nificantly outperforms SLD-max in image preservation.
Notably, the LPIPS values of SP-Guard are comparable
to baselines that exhibit minimal safety gains, highlight-
ing the effectiveness of our selective masking strategy.
We further evaluate the image quality using FID and CLIP scores on COCO-30k and DrawBench. As
shown in the right-most columns of Table 1, SP-Guard achieves FID and CLIP scores closer to those of
the original SD, while maintaining superior or comparable safe generation performance to SLD-max.
Notably, SP-Guard outperforms the other baselines, except SLD-weak, which shows considerably lower
performance in safety. To illustrate the trade-off between safety and content preservation, Fig. 5 shows
the results for the top-performing methods: SLD-strong, SLD-max, and SP-Guard. The y-axis represents
the average relative improvement over SD in unsafe detection rates, while the reversed x-axis shows
the LPIPS, indicating perceptual similarity to images generated by SD. Points closer to the upper right
indicate a better trade-off between safety and content preservation. SP-Guard consistently achieves



Figure 6: Evaluation of 𝜆(𝑡) variations. This plot demonstrates the impact of varying 𝜆 of SP-Guard.

lower LPIPS scores than SLD-max and SLD-strong (except against SLD-strong on Ring-A-Bell), showing
that the generated images by SP-Guard remain closer to the original SD outputs while ensuring safety.

We vary the maximum guidance scale 𝜆max from 2.0 to 6.0 in increments of 0.5, and also evaluate a
cosine-based schedule as an alternative to the step function. Fig. 6 shows the results in the same format
as the trade-off plot. SP-Guard consistently aligns with the Pareto front, showing robust performance
across different 𝜆max values and scheduling strategies.

4. Discussion & Conclusion

This work highlights the importance of accurately estimating the potential harmfulness of generated
content. Moreover, as SP-Guard is an inference-time guiding approach, it allows flexible modification or
addition of unsafe concepts without retraining. Such adaptability enables rapid alignment with evolving
social norms and regulations [37], making the method practical for real-world moderation pipelines
and dynamic regulatory environments. Moreover, since our method relies on the general mechanism of
guidance and the similarity between the intended semantics and harmful concepts, the framework can
be naturally extended to other modalities such as video or speech generation. Beyond improving safety,
our work strengthens the trustworthiness of generative AI systems in two ways. First, by diagnosing the
failure modes of prior approaches, we emphasize the importance of carefully designing both the guidance
mechanism and the masking process. Second, by estimating the prompt-specific potential harmfulness,
SP-Guard offers transparency and controllability: users and deployers can see when and why safety
interventions are applied. These features enhance trustworthiness rather than merely increasing safety.
However, operating at inference time introduces some slowdown compared to standard SD. This could
be mitigated by integrating recent advances in accelerating diffusion models [38, 39]. Finally, although
SP-Guard reduces hyperparameter complexity compared to SLD, it still requires tuning values such as
𝜆(𝑡) and 𝑞. A promising future direction is to dynamically adjust 𝜆(𝑡) based on the guidance signal
at each timestep. Despite these limitations, SP-Guard provides a lightweight, adaptable, and selective
inference-time approach for safer text-to-image generation. Experiments on four unsafe-related datasets
demonstrate significant improvements in safe generation with strong content preservation, while results
on two benign datasets confirm its ability to maintain high fidelity. Looking ahead, we believe SP-Guard
can be further enhanced and integrated with advancements in diffusion models, paving the way toward
safe, responsible, and trustworthy AI.
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